MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. EN 1.8932 Steel

A357.0 aluminum belongs to the aluminum alloys classification, while EN 1.8932 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is EN 1.8932 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
180
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.7
20
Fatigue Strength, MPa 100
250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 240
370
Tensile Strength: Ultimate (UTS), MPa 350
600
Tensile Strength: Yield (Proof), MPa 270
370

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
40
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
2.5
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.7
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1110
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
100
Resilience: Unit (Modulus of Resilience), kJ/m3 520
370
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 38
21
Strength to Weight: Bending, points 43
20
Thermal Diffusivity, mm2/s 68
11
Thermal Shock Resistance, points 17
17

Alloy Composition

Aluminum (Al), % 90.8 to 93
0 to 0.060
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.2
0 to 0.2
Iron (Fe), % 0 to 0.2
95.5 to 98.9
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
1.0 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 7.5
0.1 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.040 to 0.2
0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0