MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. EN 2.4669 Nickel

A357.0 aluminum belongs to the aluminum alloys classification, while EN 2.4669 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is EN 2.4669 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.7
16
Fatigue Strength, MPa 100
390
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 240
680
Tensile Strength: Ultimate (UTS), MPa 350
1110
Tensile Strength: Yield (Proof), MPa 270
720

Thermal Properties

Latent Heat of Fusion, J/g 500
310
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 610
1380
Melting Onset (Solidus), °C 560
1330
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
60
Density, g/cm3 2.6
8.4
Embodied Carbon, kg CO2/kg material 8.2
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
160
Resilience: Unit (Modulus of Resilience), kJ/m3 520
1380
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 38
37
Strength to Weight: Bending, points 43
28
Thermal Diffusivity, mm2/s 68
3.1
Thermal Shock Resistance, points 17
33

Alloy Composition

Aluminum (Al), % 90.8 to 93
0.4 to 1.0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0 to 0.2
5.0 to 9.0
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
65.9 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 6.5 to 7.5
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.040 to 0.2
2.3 to 2.8
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0