MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. EN AC-43200 Aluminum

Both A357.0 aluminum and EN AC-43200 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is EN AC-43200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
60 to 88
Elastic (Young's, Tensile) Modulus, GPa 70
72
Elongation at Break, % 3.7
1.1
Fatigue Strength, MPa 100
67
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 350
190 to 260
Tensile Strength: Yield (Proof), MPa 270
97 to 220

Thermal Properties

Latent Heat of Fusion, J/g 500
540
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 610
600
Melting Onset (Solidus), °C 560
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 160
140
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
34
Electrical Conductivity: Equal Weight (Specific), % IACS 140
120

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 2.6
2.6
Embodied Carbon, kg CO2/kg material 8.2
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
1.8 to 2.7
Resilience: Unit (Modulus of Resilience), kJ/m3 520
66 to 330
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
54
Strength to Weight: Axial, points 38
20 to 28
Strength to Weight: Bending, points 43
28 to 35
Thermal Diffusivity, mm2/s 68
59
Thermal Shock Resistance, points 17
8.8 to 12

Alloy Composition

Aluminum (Al), % 90.8 to 93
86.1 to 90.8
Beryllium (Be), % 0.040 to 0.070
0
Copper (Cu), % 0 to 0.2
0 to 0.35
Iron (Fe), % 0 to 0.2
0 to 0.65
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.4 to 0.7
0.2 to 0.45
Manganese (Mn), % 0 to 0.1
0 to 0.55
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 6.5 to 7.5
9.0 to 11
Titanium (Ti), % 0.040 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.35
Residuals, % 0
0 to 0.15