MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. Grade N7M Nickel

A357.0 aluminum belongs to the aluminum alloys classification, while grade N7M nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is grade N7M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 3.7
22
Fatigue Strength, MPa 100
190
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
85
Tensile Strength: Ultimate (UTS), MPa 350
590
Tensile Strength: Yield (Proof), MPa 270
310

Thermal Properties

Latent Heat of Fusion, J/g 500
320
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 610
1650
Melting Onset (Solidus), °C 560
1590
Specific Heat Capacity, J/kg-K 900
390
Thermal Expansion, µm/m-K 21
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
75
Density, g/cm3 2.6
9.3
Embodied Carbon, kg CO2/kg material 8.2
16
Embodied Energy, MJ/kg 150
200
Embodied Water, L/kg 1110
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
110
Resilience: Unit (Modulus of Resilience), kJ/m3 520
220
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
22
Strength to Weight: Axial, points 38
18
Strength to Weight: Bending, points 43
17
Thermal Shock Resistance, points 17
19

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
0 to 1.0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
0 to 3.0
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
30 to 33
Nickel (Ni), % 0
60.9 to 70
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0