MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. Nickel 686

A357.0 aluminum belongs to the aluminum alloys classification, while nickel 686 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is nickel 686.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 3.7
51
Fatigue Strength, MPa 100
410
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
77
Shear Strength, MPa 240
560
Tensile Strength: Ultimate (UTS), MPa 350
780
Tensile Strength: Yield (Proof), MPa 270
350

Thermal Properties

Latent Heat of Fusion, J/g 500
320
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 610
1380
Melting Onset (Solidus), °C 560
1340
Specific Heat Capacity, J/kg-K 900
420
Thermal Conductivity, W/m-K 160
9.8
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 12
70
Density, g/cm3 2.6
9.0
Embodied Carbon, kg CO2/kg material 8.2
12
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1110
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
320
Resilience: Unit (Modulus of Resilience), kJ/m3 520
280
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
22
Strength to Weight: Axial, points 38
24
Strength to Weight: Bending, points 43
21
Thermal Diffusivity, mm2/s 68
2.6
Thermal Shock Resistance, points 17
21

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
0 to 5.0
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 0.75
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
49.5 to 63
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0.040 to 0.2
0.020 to 0.25
Tungsten (W), % 0
3.0 to 4.4
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0