MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. SAE-AISI 1536 Steel

A357.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1536 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is SAE-AISI 1536 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
180 to 200
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.7
14 to 18
Fatigue Strength, MPa 100
240 to 380
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 240
400 to 440
Tensile Strength: Ultimate (UTS), MPa 350
640 to 720
Tensile Strength: Yield (Proof), MPa 270
360 to 600

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
51
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 12
1.8
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1110
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
93 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 520
340 to 950
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 38
23 to 25
Strength to Weight: Bending, points 43
21 to 23
Thermal Diffusivity, mm2/s 68
14
Thermal Shock Resistance, points 17
20 to 23

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0.3 to 0.37
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
98 to 98.5
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
1.2 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0