MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. C86300 Bronze

A357.0 aluminum belongs to the aluminum alloys classification, while C86300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
250
Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 3.7
14
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
42
Tensile Strength: Ultimate (UTS), MPa 350
850
Tensile Strength: Yield (Proof), MPa 270
480

Thermal Properties

Latent Heat of Fusion, J/g 500
200
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 610
920
Melting Onset (Solidus), °C 560
890
Specific Heat Capacity, J/kg-K 900
420
Thermal Conductivity, W/m-K 160
35
Thermal Expansion, µm/m-K 21
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 12
23
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.0
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1110
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
100
Resilience: Unit (Modulus of Resilience), kJ/m3 520
1030
Stiffness to Weight: Axial, points 15
7.8
Stiffness to Weight: Bending, points 53
20
Strength to Weight: Axial, points 38
30
Strength to Weight: Bending, points 43
25
Thermal Diffusivity, mm2/s 68
11
Thermal Shock Resistance, points 17
28

Alloy Composition

Aluminum (Al), % 90.8 to 93
5.0 to 7.5
Beryllium (Be), % 0.040 to 0.070
0
Copper (Cu), % 0 to 0.2
60 to 66
Iron (Fe), % 0 to 0.2
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
2.5 to 5.0
Nickel (Ni), % 0
0 to 1.0
Silicon (Si), % 6.5 to 7.5
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
22 to 28
Residuals, % 0
0 to 1.0