MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. N06985 Nickel

A357.0 aluminum belongs to the aluminum alloys classification, while N06985 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is N06985 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 3.7
45
Fatigue Strength, MPa 100
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 240
480
Tensile Strength: Ultimate (UTS), MPa 350
690
Tensile Strength: Yield (Proof), MPa 270
260

Thermal Properties

Latent Heat of Fusion, J/g 500
320
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 610
1350
Melting Onset (Solidus), °C 560
1260
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 160
10
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
55
Density, g/cm3 2.6
8.4
Embodied Carbon, kg CO2/kg material 8.2
8.8
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1110
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
250
Resilience: Unit (Modulus of Resilience), kJ/m3 520
160
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 38
23
Strength to Weight: Bending, points 43
21
Thermal Diffusivity, mm2/s 68
2.6
Thermal Shock Resistance, points 17
16

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0 to 0.2
1.5 to 2.5
Iron (Fe), % 0 to 0.2
18 to 21
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 8.0
Nickel (Ni), % 0
35.9 to 53.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.2
0
Tungsten (W), % 0
0 to 1.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0