MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. N07716 Nickel

A357.0 aluminum belongs to the aluminum alloys classification, while N07716 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is N07716 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.7
34
Fatigue Strength, MPa 100
690
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
78
Shear Strength, MPa 240
580
Tensile Strength: Ultimate (UTS), MPa 350
860
Tensile Strength: Yield (Proof), MPa 270
350

Thermal Properties

Latent Heat of Fusion, J/g 500
320
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 610
1480
Melting Onset (Solidus), °C 560
1430
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 160
11
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
75
Density, g/cm3 2.6
8.5
Embodied Carbon, kg CO2/kg material 8.2
13
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1110
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
240
Resilience: Unit (Modulus of Resilience), kJ/m3 520
300
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 38
28
Strength to Weight: Bending, points 43
24
Thermal Diffusivity, mm2/s 68
2.8
Thermal Shock Resistance, points 17
24

Alloy Composition

Aluminum (Al), % 90.8 to 93
0 to 0.35
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
0 to 11.3
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 0.2
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0
59 to 63
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 6.5 to 7.5
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.040 to 0.2
1.0 to 1.6
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0