MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. S17400 Stainless Steel

A357.0 aluminum belongs to the aluminum alloys classification, while S17400 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
280 to 440
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.7
11 to 21
Fatigue Strength, MPa 100
380 to 670
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 240
570 to 830
Tensile Strength: Ultimate (UTS), MPa 350
910 to 1390
Tensile Strength: Yield (Proof), MPa 270
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 500
280
Maximum Temperature: Mechanical, °C 170
850
Melting Completion (Liquidus), °C 610
1440
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
14
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1110
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 520
880 to 4060
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 38
32 to 49
Strength to Weight: Bending, points 43
27 to 35
Thermal Diffusivity, mm2/s 68
4.5
Thermal Shock Resistance, points 17
30 to 46

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0 to 0.2
3.0 to 5.0
Iron (Fe), % 0 to 0.2
70.4 to 78.9
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0