MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. S20433 Stainless Steel

A357.0 aluminum belongs to the aluminum alloys classification, while S20433 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
190
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.7
46
Fatigue Strength, MPa 100
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 240
440
Tensile Strength: Ultimate (UTS), MPa 350
630
Tensile Strength: Yield (Proof), MPa 270
270

Thermal Properties

Latent Heat of Fusion, J/g 500
280
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 610
1400
Melting Onset (Solidus), °C 560
1360
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
13
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
230
Resilience: Unit (Modulus of Resilience), kJ/m3 520
180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 38
23
Strength to Weight: Bending, points 43
21
Thermal Diffusivity, mm2/s 68
4.0
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 0 to 0.2
1.5 to 3.5
Iron (Fe), % 0 to 0.2
64.1 to 72.4
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0