MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. S30615 Stainless Steel

A357.0 aluminum belongs to the aluminum alloys classification, while S30615 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is S30615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
190
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.7
39
Fatigue Strength, MPa 100
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 240
470
Tensile Strength: Ultimate (UTS), MPa 350
690
Tensile Strength: Yield (Proof), MPa 270
310

Thermal Properties

Latent Heat of Fusion, J/g 500
340
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 610
1370
Melting Onset (Solidus), °C 560
1320
Specific Heat Capacity, J/kg-K 900
500
Thermal Conductivity, W/m-K 160
14
Thermal Expansion, µm/m-K 21
16

Otherwise Unclassified Properties

Base Metal Price, % relative 12
19
Density, g/cm3 2.6
7.6
Embodied Carbon, kg CO2/kg material 8.2
3.7
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1110
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
220
Resilience: Unit (Modulus of Resilience), kJ/m3 520
260
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 38
25
Strength to Weight: Bending, points 43
23
Thermal Diffusivity, mm2/s 68
3.7
Thermal Shock Resistance, points 17
16

Alloy Composition

Aluminum (Al), % 90.8 to 93
0.8 to 1.5
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0.16 to 0.24
Chromium (Cr), % 0
17 to 19.5
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
56.7 to 65.3
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0
13.5 to 16
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 6.5 to 7.5
3.2 to 4.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0