MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. S42030 Stainless Steel

A357.0 aluminum belongs to the aluminum alloys classification, while S42030 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is S42030 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.7
16
Fatigue Strength, MPa 100
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 240
410
Tensile Strength: Ultimate (UTS), MPa 350
670
Tensile Strength: Yield (Proof), MPa 270
410

Thermal Properties

Latent Heat of Fusion, J/g 500
280
Maximum Temperature: Mechanical, °C 170
780
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
28
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 12
10
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.5
Embodied Energy, MJ/kg 150
34
Embodied Water, L/kg 1110
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
92
Resilience: Unit (Modulus of Resilience), kJ/m3 520
440
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 38
24
Strength to Weight: Bending, points 43
22
Thermal Diffusivity, mm2/s 68
7.7
Thermal Shock Resistance, points 17
24

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 0 to 0.2
2.0 to 3.0
Iron (Fe), % 0 to 0.2
77.6 to 85
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
1.0 to 3.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0