MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. AWS ERTi-1

A360.0 aluminum belongs to the aluminum alloys classification, while AWS ERTi-1 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is AWS ERTi-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 1.6 to 5.0
24
Fatigue Strength, MPa 82 to 150
120
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 180 to 320
240
Tensile Strength: Yield (Proof), MPa 170 to 260
170

Thermal Properties

Latent Heat of Fusion, J/g 530
420
Maximum Temperature: Mechanical, °C 170
320
Melting Completion (Liquidus), °C 680
1670
Melting Onset (Solidus), °C 590
1620
Specific Heat Capacity, J/kg-K 900
540
Thermal Conductivity, W/m-K 110
21
Thermal Expansion, µm/m-K 21
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 100
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.6
4.5
Embodied Carbon, kg CO2/kg material 7.8
31
Embodied Energy, MJ/kg 150
510
Embodied Water, L/kg 1070
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
52
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 470
140
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
35
Strength to Weight: Axial, points 19 to 34
15
Strength to Weight: Bending, points 27 to 39
19
Thermal Diffusivity, mm2/s 48
8.7
Thermal Shock Resistance, points 8.5 to 15
19

Alloy Composition

Aluminum (Al), % 85.8 to 90.6
0
Carbon (C), % 0
0 to 0.030
Copper (Cu), % 0 to 0.6
0
Hydrogen (H), % 0
0 to 0.0050
Iron (Fe), % 0 to 1.3
0 to 0.080
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0
0 to 0.012
Oxygen (O), % 0
0.030 to 0.1
Silicon (Si), % 9.0 to 10
0
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
99.773 to 99.97
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0