MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. EN 1.4658 Stainless Steel

A360.0 aluminum belongs to the aluminum alloys classification, while EN 1.4658 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is EN 1.4658 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
260
Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 1.6 to 5.0
28
Fatigue Strength, MPa 82 to 150
530
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
81
Shear Strength, MPa 180
580
Tensile Strength: Ultimate (UTS), MPa 180 to 320
900
Tensile Strength: Yield (Proof), MPa 170 to 260
730

Thermal Properties

Latent Heat of Fusion, J/g 530
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 680
1450
Melting Onset (Solidus), °C 590
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 21
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
4.5
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1070
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
240
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 470
1280
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 19 to 34
32
Strength to Weight: Bending, points 27 to 39
26
Thermal Diffusivity, mm2/s 48
4.3
Thermal Shock Resistance, points 8.5 to 15
24

Alloy Composition

Aluminum (Al), % 85.8 to 90.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
26 to 29
Cobalt (Co), % 0
0.5 to 2.0
Copper (Cu), % 0 to 0.6
0 to 1.0
Iron (Fe), % 0 to 1.3
50.9 to 63.7
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.5
5.5 to 9.5
Nitrogen (N), % 0
0.3 to 0.5
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 9.0 to 10
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0