MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. EN 1.7703 Steel

A360.0 aluminum belongs to the aluminum alloys classification, while EN 1.7703 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is EN 1.7703 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.6 to 5.0
20
Fatigue Strength, MPa 82 to 150
320 to 340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 180
420 to 430
Tensile Strength: Ultimate (UTS), MPa 180 to 320
670 to 690
Tensile Strength: Yield (Proof), MPa 170 to 260
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 530
250
Maximum Temperature: Mechanical, °C 170
460
Melting Completion (Liquidus), °C 680
1470
Melting Onset (Solidus), °C 590
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 110
39
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.2
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.8
2.5
Embodied Energy, MJ/kg 150
35
Embodied Water, L/kg 1070
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 470
570 to 650
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 19 to 34
24
Strength to Weight: Bending, points 27 to 39
22
Thermal Diffusivity, mm2/s 48
11
Thermal Shock Resistance, points 8.5 to 15
19 to 20

Alloy Composition

Aluminum (Al), % 85.8 to 90.6
0
Carbon (C), % 0
0.11 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 0 to 0.6
0 to 0.2
Iron (Fe), % 0 to 1.3
94.6 to 96.4
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.5
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 9.0 to 10
0 to 0.1
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0