MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. EN 2.4951 Nickel

A360.0 aluminum belongs to the aluminum alloys classification, while EN 2.4951 nickel belongs to the nickel alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is EN 2.4951 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
200
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.6 to 5.0
34
Fatigue Strength, MPa 82 to 150
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
76
Shear Strength, MPa 180
500
Tensile Strength: Ultimate (UTS), MPa 180 to 320
750
Tensile Strength: Yield (Proof), MPa 170 to 260
270

Thermal Properties

Latent Heat of Fusion, J/g 530
320
Maximum Temperature: Mechanical, °C 170
1150
Melting Completion (Liquidus), °C 680
1360
Melting Onset (Solidus), °C 590
1310
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.6
8.5
Embodied Carbon, kg CO2/kg material 7.8
9.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1070
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
200
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 470
190
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 19 to 34
25
Strength to Weight: Bending, points 27 to 39
22
Thermal Diffusivity, mm2/s 48
3.1
Thermal Shock Resistance, points 8.5 to 15
23

Alloy Composition

Aluminum (Al), % 85.8 to 90.6
0 to 0.3
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0 to 0.6
0 to 0.5
Iron (Fe), % 0 to 1.3
0 to 5.0
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 0 to 0.5
65.4 to 81.7
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 9.0 to 10
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0.2 to 0.6
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0