MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. EN AC-44400 Aluminum

Both A360.0 aluminum and EN AC-44400 aluminum are aluminum alloys. They have a very high 99% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is EN AC-44400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
61
Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 1.6 to 5.0
4.1
Fatigue Strength, MPa 82 to 150
79
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 180 to 320
210
Tensile Strength: Yield (Proof), MPa 170 to 260
110

Thermal Properties

Latent Heat of Fusion, J/g 530
540
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 680
600
Melting Onset (Solidus), °C 590
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 110
140
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
33
Electrical Conductivity: Equal Weight (Specific), % IACS 100
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.6
Embodied Carbon, kg CO2/kg material 7.8
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
7.3
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 470
85
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
54
Strength to Weight: Axial, points 19 to 34
23
Strength to Weight: Bending, points 27 to 39
31
Thermal Diffusivity, mm2/s 48
60
Thermal Shock Resistance, points 8.5 to 15
9.8

Alloy Composition

Aluminum (Al), % 85.8 to 90.6
87.1 to 92
Copper (Cu), % 0 to 0.6
0 to 0.1
Iron (Fe), % 0 to 1.3
0 to 0.65
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.4 to 0.6
0 to 0.1
Manganese (Mn), % 0 to 0.35
0 to 0.5
Nickel (Ni), % 0 to 0.5
0 to 0.050
Silicon (Si), % 9.0 to 10
8.0 to 11
Tin (Sn), % 0 to 0.15
0 to 0.050
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.5
0 to 0.15
Residuals, % 0
0 to 0.15