MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. Grade C-6 Titanium

A360.0 aluminum belongs to the aluminum alloys classification, while grade C-6 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is grade C-6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
290
Elastic (Young's, Tensile) Modulus, GPa 72
100
Elongation at Break, % 1.6 to 5.0
9.0
Fatigue Strength, MPa 82 to 150
460
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
39
Tensile Strength: Ultimate (UTS), MPa 180 to 320
890
Tensile Strength: Yield (Proof), MPa 170 to 260
830

Thermal Properties

Latent Heat of Fusion, J/g 530
410
Maximum Temperature: Mechanical, °C 170
310
Melting Completion (Liquidus), °C 680
1580
Melting Onset (Solidus), °C 590
1530
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 110
7.8
Thermal Expansion, µm/m-K 21
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.6
4.5
Embodied Carbon, kg CO2/kg material 7.8
30
Embodied Energy, MJ/kg 150
480
Embodied Water, L/kg 1070
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
78
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 470
3300
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
35
Strength to Weight: Axial, points 19 to 34
55
Strength to Weight: Bending, points 27 to 39
46
Thermal Diffusivity, mm2/s 48
3.2
Thermal Shock Resistance, points 8.5 to 15
63

Alloy Composition

Aluminum (Al), % 85.8 to 90.6
4.0 to 6.0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 0 to 0.6
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.3
0 to 0.5
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0 to 0.5
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 9.0 to 10
0
Tin (Sn), % 0 to 0.15
2.0 to 3.0
Titanium (Ti), % 0
89.7 to 94
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.4