MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. Grade CW2M Nickel

A360.0 aluminum belongs to the aluminum alloys classification, while grade CW2M nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is grade CW2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 1.6 to 5.0
23
Fatigue Strength, MPa 82 to 150
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
83
Tensile Strength: Ultimate (UTS), MPa 180 to 320
560
Tensile Strength: Yield (Proof), MPa 170 to 260
310

Thermal Properties

Latent Heat of Fusion, J/g 530
330
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 680
1520
Melting Onset (Solidus), °C 590
1460
Specific Heat Capacity, J/kg-K 900
430
Thermal Expansion, µm/m-K 21
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.6
8.8
Embodied Carbon, kg CO2/kg material 7.8
12
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1070
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
110
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 470
220
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 19 to 34
18
Strength to Weight: Bending, points 27 to 39
17
Thermal Shock Resistance, points 8.5 to 15
16

Alloy Composition

Aluminum (Al), % 85.8 to 90.6
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
15 to 17.5
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 1.3
0 to 2.0
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
15 to 17.5
Nickel (Ni), % 0 to 0.5
60.1 to 70
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 9.0 to 10
0 to 0.8
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0