MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. Sintered 2014 Aluminum

Both A360.0 aluminum and sintered 2014 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is sintered 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
70
Elongation at Break, % 1.6 to 5.0
0.5 to 3.0
Fatigue Strength, MPa 82 to 150
52 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 180 to 320
140 to 290
Tensile Strength: Yield (Proof), MPa 170 to 260
97 to 280

Thermal Properties

Latent Heat of Fusion, J/g 530
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 680
650
Melting Onset (Solidus), °C 590
560
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 110
130
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
33
Electrical Conductivity: Equal Weight (Specific), % IACS 100
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
2.9
Embodied Carbon, kg CO2/kg material 7.8
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
1.0 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 470
68 to 560
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
47
Strength to Weight: Axial, points 19 to 34
13 to 27
Strength to Weight: Bending, points 27 to 39
20 to 33
Thermal Diffusivity, mm2/s 48
51
Thermal Shock Resistance, points 8.5 to 15
6.2 to 13

Alloy Composition

Aluminum (Al), % 85.8 to 90.6
91.5 to 96.3
Copper (Cu), % 0 to 0.6
3.5 to 5.0
Iron (Fe), % 0 to 1.3
0
Magnesium (Mg), % 0.4 to 0.6
0.2 to 0.8
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 9.0 to 10
0 to 1.2
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 1.5