MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. Titanium 15-3-3-3

A360.0 aluminum belongs to the aluminum alloys classification, while titanium 15-3-3-3 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is titanium 15-3-3-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
100
Elongation at Break, % 1.6 to 5.0
5.7 to 8.0
Fatigue Strength, MPa 82 to 150
610 to 710
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
39
Shear Strength, MPa 180
660 to 810
Tensile Strength: Ultimate (UTS), MPa 180 to 320
1120 to 1390
Tensile Strength: Yield (Proof), MPa 170 to 260
1100 to 1340

Thermal Properties

Latent Heat of Fusion, J/g 530
390
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 680
1620
Melting Onset (Solidus), °C 590
1560
Specific Heat Capacity, J/kg-K 900
520
Thermal Conductivity, W/m-K 110
8.1
Thermal Expansion, µm/m-K 21
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
40
Density, g/cm3 2.6
4.8
Embodied Carbon, kg CO2/kg material 7.8
59
Embodied Energy, MJ/kg 150
950
Embodied Water, L/kg 1070
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
78 to 89
Stiffness to Weight: Axial, points 15
12
Stiffness to Weight: Bending, points 53
32
Strength to Weight: Axial, points 19 to 34
64 to 80
Strength to Weight: Bending, points 27 to 39
50 to 57
Thermal Diffusivity, mm2/s 48
3.2
Thermal Shock Resistance, points 8.5 to 15
79 to 98

Alloy Composition

Aluminum (Al), % 85.8 to 90.6
2.5 to 3.5
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
2.5 to 3.5
Copper (Cu), % 0 to 0.6
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.3
0 to 0.25
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Silicon (Si), % 9.0 to 10
0
Tin (Sn), % 0 to 0.15
2.5 to 3.5
Titanium (Ti), % 0
72.6 to 78.5
Vanadium (V), % 0
14 to 16
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.4