MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. N06985 Nickel

A360.0 aluminum belongs to the aluminum alloys classification, while N06985 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is N06985 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 1.6 to 5.0
45
Fatigue Strength, MPa 82 to 150
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Shear Strength, MPa 180
480
Tensile Strength: Ultimate (UTS), MPa 180 to 320
690
Tensile Strength: Yield (Proof), MPa 170 to 260
260

Thermal Properties

Latent Heat of Fusion, J/g 530
320
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 680
1350
Melting Onset (Solidus), °C 590
1260
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 110
10
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.6
8.4
Embodied Carbon, kg CO2/kg material 7.8
8.8
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1070
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
250
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 470
160
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 19 to 34
23
Strength to Weight: Bending, points 27 to 39
21
Thermal Diffusivity, mm2/s 48
2.6
Thermal Shock Resistance, points 8.5 to 15
16

Alloy Composition

Aluminum (Al), % 85.8 to 90.6
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0 to 0.6
1.5 to 2.5
Iron (Fe), % 0 to 1.3
18 to 21
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 8.0
Nickel (Ni), % 0 to 0.5
35.9 to 53.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 10
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Tungsten (W), % 0
0 to 1.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0