MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. N08120 Nickel

A360.0 aluminum belongs to the aluminum alloys classification, while N08120 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.6 to 5.0
34
Fatigue Strength, MPa 82 to 150
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Shear Strength, MPa 180
470
Tensile Strength: Ultimate (UTS), MPa 180 to 320
700
Tensile Strength: Yield (Proof), MPa 170 to 260
310

Thermal Properties

Latent Heat of Fusion, J/g 530
310
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 680
1420
Melting Onset (Solidus), °C 590
1370
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 110
11
Thermal Expansion, µm/m-K 21
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
45
Density, g/cm3 2.6
8.2
Embodied Carbon, kg CO2/kg material 7.8
7.2
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1070
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
190
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 470
240
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 19 to 34
24
Strength to Weight: Bending, points 27 to 39
21
Thermal Diffusivity, mm2/s 48
3.0
Thermal Shock Resistance, points 8.5 to 15
17

Alloy Composition

Aluminum (Al), % 85.8 to 90.6
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0 to 0.6
0 to 0.5
Iron (Fe), % 0 to 1.3
21 to 41.4
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 0 to 0.5
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 10
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0