MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. R30021 Cobalt

A360.0 aluminum belongs to the aluminum alloys classification, while R30021 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is R30021 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
220
Elongation at Break, % 1.6 to 5.0
9.0
Fatigue Strength, MPa 82 to 150
250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
86
Tensile Strength: Ultimate (UTS), MPa 180 to 320
700
Tensile Strength: Yield (Proof), MPa 170 to 260
500

Thermal Properties

Latent Heat of Fusion, J/g 530
330
Melting Completion (Liquidus), °C 680
1350
Melting Onset (Solidus), °C 590
1190
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.1

Otherwise Unclassified Properties

Density, g/cm3 2.6
8.4
Embodied Carbon, kg CO2/kg material 7.8
8.0
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1070
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
57
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 470
570
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 19 to 34
23
Strength to Weight: Bending, points 27 to 39
21
Thermal Diffusivity, mm2/s 48
3.8
Thermal Shock Resistance, points 8.5 to 15
21

Alloy Composition

Aluminum (Al), % 85.8 to 90.6
0
Carbon (C), % 0
0.2 to 0.35
Chromium (Cr), % 0
26 to 29
Cobalt (Co), % 0
61.7 to 67.3
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 1.3
0 to 3.0
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0
Molybdenum (Mo), % 0
4.5 to 6.0
Nickel (Ni), % 0 to 0.5
2.0 to 3.0
Silicon (Si), % 9.0 to 10
0 to 1.5
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0