MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. S15500 Stainless Steel

A360.0 aluminum belongs to the aluminum alloys classification, while S15500 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
290 to 430
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.6 to 5.0
6.8 to 16
Fatigue Strength, MPa 82 to 150
350 to 650
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 180
540 to 870
Tensile Strength: Ultimate (UTS), MPa 180 to 320
890 to 1490
Tensile Strength: Yield (Proof), MPa 170 to 260
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 530
280
Maximum Temperature: Mechanical, °C 170
820
Melting Completion (Liquidus), °C 680
1430
Melting Onset (Solidus), °C 590
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 110
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1070
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 470
890 to 4460
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 19 to 34
32 to 53
Strength to Weight: Bending, points 27 to 39
26 to 37
Thermal Diffusivity, mm2/s 48
4.6
Thermal Shock Resistance, points 8.5 to 15
30 to 50

Alloy Composition

Aluminum (Al), % 85.8 to 90.6
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
14 to 15.5
Copper (Cu), % 0 to 0.6
2.5 to 4.5
Iron (Fe), % 0 to 1.3
71.9 to 79.9
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 0 to 0.5
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 10
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0