MakeItFrom.com
Menu (ESC)

A380.0 Aluminum vs. 1350 Aluminum

Both A380.0 aluminum and 1350 aluminum are aluminum alloys. They have 85% of their average alloy composition in common.

For each property being compared, the top bar is A380.0 aluminum and the bottom bar is 1350 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
20 to 45
Elastic (Young's, Tensile) Modulus, GPa 73
68
Elongation at Break, % 3.3
1.4 to 30
Fatigue Strength, MPa 140
24 to 50
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 190
44 to 110
Tensile Strength: Ultimate (UTS), MPa 290
68 to 190
Tensile Strength: Yield (Proof), MPa 160
25 to 170

Thermal Properties

Latent Heat of Fusion, J/g 510
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
660
Melting Onset (Solidus), °C 550
650
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 96
230
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
61 to 62
Electrical Conductivity: Equal Weight (Specific), % IACS 78
200 to 210

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Calomel Potential, mV -710
-740
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 7.5
8.3
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 1040
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.3
0.77 to 54
Resilience: Unit (Modulus of Resilience), kJ/m3 180
4.4 to 200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
50
Strength to Weight: Axial, points 28
7.0 to 19
Strength to Weight: Bending, points 34
14 to 27
Thermal Diffusivity, mm2/s 38
96
Thermal Shock Resistance, points 13
3.0 to 8.2

Alloy Composition

Aluminum (Al), % 80.3 to 89.5
99.5 to 100
Boron (B), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 0.010
Copper (Cu), % 3.0 to 4.0
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 1.3
0 to 0.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 0.010
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 7.5 to 9.5
0 to 0.1
Tin (Sn), % 0 to 0.35
0
Titanium (Ti), % 0
0 to 0.020
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0 to 3.0
0 to 0.050
Residuals, % 0
0 to 0.1