MakeItFrom.com
Menu (ESC)

A380.0 Aluminum vs. 6008 Aluminum

Both A380.0 aluminum and 6008 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A380.0 aluminum and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
69
Elongation at Break, % 3.3
9.1 to 17
Fatigue Strength, MPa 140
55 to 88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 190
120 to 170
Tensile Strength: Ultimate (UTS), MPa 290
200 to 290
Tensile Strength: Yield (Proof), MPa 160
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 510
410
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 590
640
Melting Onset (Solidus), °C 550
620
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 96
190
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
49
Electrical Conductivity: Equal Weight (Specific), % IACS 78
160

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 7.5
8.5
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 1040
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.3
24 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 180
76 to 360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
50
Strength to Weight: Axial, points 28
21 to 29
Strength to Weight: Bending, points 34
28 to 35
Thermal Diffusivity, mm2/s 38
77
Thermal Shock Resistance, points 13
9.0 to 13

Alloy Composition

Aluminum (Al), % 80.3 to 89.5
96.5 to 99.1
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 3.0 to 4.0
0 to 0.3
Iron (Fe), % 0 to 1.3
0 to 0.35
Magnesium (Mg), % 0 to 0.1
0.4 to 0.7
Manganese (Mn), % 0 to 0.5
0 to 0.3
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 7.5 to 9.5
0.5 to 0.9
Tin (Sn), % 0 to 0.35
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0 to 3.0
0 to 0.2
Residuals, % 0
0 to 0.15