MakeItFrom.com
Menu (ESC)

A380.0 Aluminum vs. ASTM Grade HD Steel

A380.0 aluminum belongs to the aluminum alloys classification, while ASTM grade HD steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A380.0 aluminum and the bottom bar is ASTM grade HD steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.3
9.1
Fatigue Strength, MPa 140
140
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 290
590
Tensile Strength: Yield (Proof), MPa 160
270

Thermal Properties

Latent Heat of Fusion, J/g 510
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1410
Melting Onset (Solidus), °C 550
1370
Specific Heat Capacity, J/kg-K 870
490
Thermal Conductivity, W/m-K 96
16
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 78
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
17
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 7.5
3.1
Embodied Energy, MJ/kg 140
45
Embodied Water, L/kg 1040
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.3
44
Resilience: Unit (Modulus of Resilience), kJ/m3 180
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 48
26
Strength to Weight: Axial, points 28
21
Strength to Weight: Bending, points 34
20
Thermal Diffusivity, mm2/s 38
4.3
Thermal Shock Resistance, points 13
19

Alloy Composition

Aluminum (Al), % 80.3 to 89.5
0
Carbon (C), % 0
0 to 0.5
Chromium (Cr), % 0
26 to 30
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.3
58.4 to 70
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.5
4.0 to 7.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.5 to 9.5
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0