MakeItFrom.com
Menu (ESC)

A380.0 Aluminum vs. C443.0 Aluminum

Both A380.0 aluminum and C443.0 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a moderately high 92% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is A380.0 aluminum and the bottom bar is C443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
65
Elastic (Young's, Tensile) Modulus, GPa 73
71
Elongation at Break, % 3.3
9.0
Fatigue Strength, MPa 140
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Shear Strength, MPa 190
130
Tensile Strength: Ultimate (UTS), MPa 290
230
Tensile Strength: Yield (Proof), MPa 160
100

Thermal Properties

Latent Heat of Fusion, J/g 510
470
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
630
Melting Onset (Solidus), °C 550
600
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 96
140
Thermal Expansion, µm/m-K 22
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
37
Electrical Conductivity: Equal Weight (Specific), % IACS 78
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 7.5
7.9
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.3
17
Resilience: Unit (Modulus of Resilience), kJ/m3 180
70
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 48
51
Strength to Weight: Axial, points 28
24
Strength to Weight: Bending, points 34
31
Thermal Diffusivity, mm2/s 38
58
Thermal Shock Resistance, points 13
10

Alloy Composition

Aluminum (Al), % 80.3 to 89.5
89.6 to 95.5
Copper (Cu), % 3.0 to 4.0
0 to 0.6
Iron (Fe), % 0 to 1.3
0 to 2.0
Magnesium (Mg), % 0 to 0.1
0 to 0.1
Manganese (Mn), % 0 to 0.5
0 to 0.35
Nickel (Ni), % 0 to 0.5
0 to 0.5
Silicon (Si), % 7.5 to 9.5
4.5 to 6.0
Tin (Sn), % 0 to 0.35
0 to 0.15
Zinc (Zn), % 0 to 3.0
0 to 0.5
Residuals, % 0
0 to 0.25