MakeItFrom.com
Menu (ESC)

A380.0 Aluminum vs. EN 1.3558 Steel

A380.0 aluminum belongs to the aluminum alloys classification, while EN 1.3558 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A380.0 aluminum and the bottom bar is EN 1.3558 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
230
Elastic (Young's, Tensile) Modulus, GPa 73
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 290
770

Thermal Properties

Latent Heat of Fusion, J/g 510
240
Maximum Temperature: Mechanical, °C 170
490
Melting Completion (Liquidus), °C 590
1810
Melting Onset (Solidus), °C 550
1760
Specific Heat Capacity, J/kg-K 870
410
Thermal Conductivity, W/m-K 96
20
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
13
Electrical Conductivity: Equal Weight (Specific), % IACS 78
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
45
Density, g/cm3 2.9
9.3
Embodied Carbon, kg CO2/kg material 7.5
8.4
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 1040
90

Common Calculations

Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 48
21
Strength to Weight: Axial, points 28
23
Strength to Weight: Bending, points 34
20
Thermal Diffusivity, mm2/s 38
5.3
Thermal Shock Resistance, points 13
22

Alloy Composition

Aluminum (Al), % 80.3 to 89.5
0
Carbon (C), % 0
0.7 to 0.8
Chromium (Cr), % 0
3.9 to 4.3
Copper (Cu), % 3.0 to 4.0
0 to 0.3
Iron (Fe), % 0 to 1.3
73.7 to 77.6
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 0.4
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 7.5 to 9.5
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.35
0
Tungsten (W), % 0
17.5 to 19
Vanadium (V), % 0
1.0 to 1.3
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0