MakeItFrom.com
Menu (ESC)

A380.0 Aluminum vs. EN 1.4107 Stainless Steel

A380.0 aluminum belongs to the aluminum alloys classification, while EN 1.4107 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A380.0 aluminum and the bottom bar is EN 1.4107 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.3
18 to 21
Fatigue Strength, MPa 140
260 to 350
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 290
620 to 700
Tensile Strength: Yield (Proof), MPa 160
400 to 570

Thermal Properties

Latent Heat of Fusion, J/g 510
270
Maximum Temperature: Mechanical, °C 170
740
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 96
27
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 78
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.5
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.5
2.1
Embodied Energy, MJ/kg 140
30
Embodied Water, L/kg 1040
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.3
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 180
420 to 840
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 28
22 to 25
Strength to Weight: Bending, points 34
21 to 22
Thermal Diffusivity, mm2/s 38
7.2
Thermal Shock Resistance, points 13
22 to 25

Alloy Composition

Aluminum (Al), % 80.3 to 89.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
11.5 to 12.5
Copper (Cu), % 3.0 to 4.0
0 to 0.3
Iron (Fe), % 0 to 1.3
83.8 to 87.2
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.5
0.8 to 1.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.5 to 9.5
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.35
0
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0