MakeItFrom.com
Menu (ESC)

A380.0 Aluminum vs. EN 1.4371 Stainless Steel

A380.0 aluminum belongs to the aluminum alloys classification, while EN 1.4371 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A380.0 aluminum and the bottom bar is EN 1.4371 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
220 to 230
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.3
45 to 51
Fatigue Strength, MPa 140
290 to 340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 190
520 to 540
Tensile Strength: Ultimate (UTS), MPa 290
740 to 750
Tensile Strength: Yield (Proof), MPa 160
320 to 340

Thermal Properties

Latent Heat of Fusion, J/g 510
280
Maximum Temperature: Mechanical, °C 170
880
Melting Completion (Liquidus), °C 590
1410
Melting Onset (Solidus), °C 550
1370
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 96
15
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 78
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 7.5
2.6
Embodied Energy, MJ/kg 140
38
Embodied Water, L/kg 1040
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.3
270 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 180
250 to 300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 28
27
Strength to Weight: Bending, points 34
24
Thermal Diffusivity, mm2/s 38
4.0
Thermal Shock Resistance, points 13
16

Alloy Composition

Aluminum (Al), % 80.3 to 89.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 3.0 to 4.0
0 to 1.0
Iron (Fe), % 0 to 1.3
66.7 to 74.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
6.0 to 8.0
Nickel (Ni), % 0 to 0.5
3.5 to 5.5
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 7.5 to 9.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0