MakeItFrom.com
Menu (ESC)

A380.0 Aluminum vs. EN 1.4422 Stainless Steel

A380.0 aluminum belongs to the aluminum alloys classification, while EN 1.4422 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A380.0 aluminum and the bottom bar is EN 1.4422 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.3
17
Fatigue Strength, MPa 140
380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 190
520
Tensile Strength: Ultimate (UTS), MPa 290
850
Tensile Strength: Yield (Proof), MPa 160
630

Thermal Properties

Latent Heat of Fusion, J/g 510
270
Maximum Temperature: Mechanical, °C 170
760
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 96
16
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 78
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 7.5
2.7
Embodied Energy, MJ/kg 140
37
Embodied Water, L/kg 1040
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.3
130
Resilience: Unit (Modulus of Resilience), kJ/m3 180
1000
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 28
30
Strength to Weight: Bending, points 34
25
Thermal Diffusivity, mm2/s 38
4.3
Thermal Shock Resistance, points 13
31

Alloy Composition

Aluminum (Al), % 80.3 to 89.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
11 to 13
Copper (Cu), % 3.0 to 4.0
0.2 to 0.8
Iron (Fe), % 0 to 1.3
76.8 to 83.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
1.3 to 1.8
Nickel (Ni), % 0 to 0.5
4.0 to 5.0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.5 to 9.5
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0