MakeItFrom.com
Menu (ESC)

A380.0 Aluminum vs. EN 1.4652 Stainless Steel

A380.0 aluminum belongs to the aluminum alloys classification, while EN 1.4652 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A380.0 aluminum and the bottom bar is EN 1.4652 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
270
Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 3.3
45
Fatigue Strength, MPa 140
450
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 190
610
Tensile Strength: Ultimate (UTS), MPa 290
880
Tensile Strength: Yield (Proof), MPa 160
490

Thermal Properties

Latent Heat of Fusion, J/g 510
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 96
9.8
Thermal Expansion, µm/m-K 22
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 78
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
34
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 7.5
6.4
Embodied Energy, MJ/kg 140
87
Embodied Water, L/kg 1040
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.3
340
Resilience: Unit (Modulus of Resilience), kJ/m3 180
570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 28
30
Strength to Weight: Bending, points 34
25
Thermal Diffusivity, mm2/s 38
2.6
Thermal Shock Resistance, points 13
20

Alloy Composition

Aluminum (Al), % 80.3 to 89.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 3.0 to 4.0
0.3 to 0.6
Iron (Fe), % 0 to 1.3
38.3 to 46.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 0 to 0.5
21 to 23
Nitrogen (N), % 0
0.45 to 0.55
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.5 to 9.5
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0