MakeItFrom.com
Menu (ESC)

A380.0 Aluminum vs. EN 1.4749 Stainless Steel

A380.0 aluminum belongs to the aluminum alloys classification, while EN 1.4749 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A380.0 aluminum and the bottom bar is EN 1.4749 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
180
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.3
16
Fatigue Strength, MPa 140
190
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Shear Strength, MPa 190
370
Tensile Strength: Ultimate (UTS), MPa 290
600
Tensile Strength: Yield (Proof), MPa 160
320

Thermal Properties

Latent Heat of Fusion, J/g 510
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1420
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 870
490
Thermal Conductivity, W/m-K 96
17
Thermal Expansion, µm/m-K 22
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 78
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 2.9
7.6
Embodied Carbon, kg CO2/kg material 7.5
2.5
Embodied Energy, MJ/kg 140
36
Embodied Water, L/kg 1040
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.3
80
Resilience: Unit (Modulus of Resilience), kJ/m3 180
250
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 48
26
Strength to Weight: Axial, points 28
22
Strength to Weight: Bending, points 34
21
Thermal Diffusivity, mm2/s 38
4.6
Thermal Shock Resistance, points 13
22

Alloy Composition

Aluminum (Al), % 80.3 to 89.5
0
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0
26 to 29
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.3
68.5 to 73.7
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.5 to 9.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0