MakeItFrom.com
Menu (ESC)

A380.0 Aluminum vs. EN 1.4887 Stainless Steel

A380.0 aluminum belongs to the aluminum alloys classification, while EN 1.4887 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A380.0 aluminum and the bottom bar is EN 1.4887 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
170
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.3
45
Fatigue Strength, MPa 140
280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 190
400
Tensile Strength: Ultimate (UTS), MPa 290
580
Tensile Strength: Yield (Proof), MPa 160
300

Thermal Properties

Latent Heat of Fusion, J/g 510
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1390
Melting Onset (Solidus), °C 550
1350
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 96
12
Thermal Expansion, µm/m-K 22
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 78
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
39
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 7.5
6.7
Embodied Energy, MJ/kg 140
96
Embodied Water, L/kg 1040
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.3
220
Resilience: Unit (Modulus of Resilience), kJ/m3 180
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 28
20
Strength to Weight: Bending, points 34
19
Thermal Diffusivity, mm2/s 38
3.2
Thermal Shock Resistance, points 13
14

Alloy Composition

Aluminum (Al), % 80.3 to 89.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.3
34.2 to 45
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Nickel (Ni), % 0 to 0.5
33 to 37
Niobium (Nb), % 0
1.0 to 1.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.5 to 9.5
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0