MakeItFrom.com
Menu (ESC)

A380.0 Aluminum vs. Grade CY40 Nickel

A380.0 aluminum belongs to the aluminum alloys classification, while grade CY40 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A380.0 aluminum and the bottom bar is grade CY40 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.3
34
Fatigue Strength, MPa 140
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 290
540
Tensile Strength: Yield (Proof), MPa 160
220

Thermal Properties

Latent Heat of Fusion, J/g 510
330
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 590
1350
Melting Onset (Solidus), °C 550
1300
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 96
14
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 78
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 11
55
Density, g/cm3 2.9
8.4
Embodied Carbon, kg CO2/kg material 7.5
9.1
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 1040
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.3
150
Resilience: Unit (Modulus of Resilience), kJ/m3 180
130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 48
23
Strength to Weight: Axial, points 28
18
Strength to Weight: Bending, points 34
18
Thermal Diffusivity, mm2/s 38
3.7
Thermal Shock Resistance, points 13
16

Alloy Composition

Aluminum (Al), % 80.3 to 89.5
0
Carbon (C), % 0
0 to 0.4
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.3
0 to 11
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Nickel (Ni), % 0 to 0.5
67 to 86
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.5 to 9.5
0 to 3.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0