MakeItFrom.com
Menu (ESC)

A380.0 Aluminum vs. C11100 Copper

A380.0 aluminum belongs to the aluminum alloys classification, while C11100 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A380.0 aluminum and the bottom bar is C11100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
120
Elongation at Break, % 3.3
1.5
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
44
Shear Strength, MPa 190
230
Tensile Strength: Ultimate (UTS), MPa 290
460
Tensile Strength: Yield (Proof), MPa 160
420

Thermal Properties

Latent Heat of Fusion, J/g 510
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 590
1080
Melting Onset (Solidus), °C 550
1070
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 96
390
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
100
Electrical Conductivity: Equal Weight (Specific), % IACS 78
100

Otherwise Unclassified Properties

Base Metal Price, % relative 11
31
Density, g/cm3 2.9
9.0
Embodied Carbon, kg CO2/kg material 7.5
2.6
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 1040
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.3
6.6
Resilience: Unit (Modulus of Resilience), kJ/m3 180
750
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 48
18
Strength to Weight: Axial, points 28
14
Strength to Weight: Bending, points 34
15
Thermal Diffusivity, mm2/s 38
110
Thermal Shock Resistance, points 13
16

Alloy Composition

Aluminum (Al), % 80.3 to 89.5
0
Copper (Cu), % 3.0 to 4.0
99.9 to 100
Iron (Fe), % 0 to 1.3
0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 7.5 to 9.5
0
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0
0 to 0.1