MakeItFrom.com
Menu (ESC)

A380.0 Aluminum vs. C46500 Brass

A380.0 aluminum belongs to the aluminum alloys classification, while C46500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A380.0 aluminum and the bottom bar is C46500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
100
Elongation at Break, % 3.3
18 to 50
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
40
Shear Strength, MPa 190
280 to 380
Tensile Strength: Ultimate (UTS), MPa 290
380 to 610
Tensile Strength: Yield (Proof), MPa 160
190 to 490

Thermal Properties

Latent Heat of Fusion, J/g 510
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 590
900
Melting Onset (Solidus), °C 550
890
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 96
120
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
26
Electrical Conductivity: Equal Weight (Specific), % IACS 78
29

Otherwise Unclassified Properties

Base Metal Price, % relative 11
23
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 7.5
2.7
Embodied Energy, MJ/kg 140
47
Embodied Water, L/kg 1040
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.3
99 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 180
170 to 1170
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 48
20
Strength to Weight: Axial, points 28
13 to 21
Strength to Weight: Bending, points 34
15 to 20
Thermal Diffusivity, mm2/s 38
38
Thermal Shock Resistance, points 13
13 to 20

Alloy Composition

Aluminum (Al), % 80.3 to 89.5
0
Arsenic (As), % 0
0.020 to 0.060
Copper (Cu), % 3.0 to 4.0
59 to 62
Iron (Fe), % 0 to 1.3
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 7.5 to 9.5
0
Tin (Sn), % 0 to 0.35
0.5 to 1.0
Zinc (Zn), % 0 to 3.0
36.2 to 40.5
Residuals, % 0
0 to 0.4