MakeItFrom.com
Menu (ESC)

A384.0 Aluminum vs. ACI-ASTM CN3M Steel

A384.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CN3M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A384.0 aluminum and the bottom bar is ACI-ASTM CN3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 2.5
34
Fatigue Strength, MPa 140
150
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
80
Tensile Strength: Ultimate (UTS), MPa 330
500
Tensile Strength: Yield (Proof), MPa 170
190

Thermal Properties

Latent Heat of Fusion, J/g 550
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 510
1400
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 96
13
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 73
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
31
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 7.5
5.9
Embodied Energy, MJ/kg 140
80
Embodied Water, L/kg 1010
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
130
Resilience: Unit (Modulus of Resilience), kJ/m3 180
89
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 32
17
Strength to Weight: Bending, points 38
17
Thermal Diffusivity, mm2/s 39
3.4
Thermal Shock Resistance, points 15
11

Alloy Composition

Aluminum (Al), % 79.3 to 86.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
42.4 to 52.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
4.5 to 5.5
Nickel (Ni), % 0 to 0.5
23 to 27
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 10.5 to 12
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0