MakeItFrom.com
Menu (ESC)

A384.0 Aluminum vs. AISI 302 Stainless Steel

A384.0 aluminum belongs to the aluminum alloys classification, while AISI 302 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A384.0 aluminum and the bottom bar is AISI 302 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 2.5
4.5 to 46
Fatigue Strength, MPa 140
210 to 520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Shear Strength, MPa 200
400 to 830
Tensile Strength: Ultimate (UTS), MPa 330
580 to 1430
Tensile Strength: Yield (Proof), MPa 170
230 to 1100

Thermal Properties

Latent Heat of Fusion, J/g 550
280
Maximum Temperature: Mechanical, °C 170
710
Melting Completion (Liquidus), °C 610
1420
Melting Onset (Solidus), °C 510
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 96
16
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 73
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 11
15
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.5
3.0
Embodied Energy, MJ/kg 140
42
Embodied Water, L/kg 1010
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
59 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 180
140 to 3070
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 32
21 to 51
Strength to Weight: Bending, points 38
20 to 36
Thermal Diffusivity, mm2/s 39
4.4
Thermal Shock Resistance, points 15
12 to 31

Alloy Composition

Aluminum (Al), % 79.3 to 86.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
67.9 to 75
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Nickel (Ni), % 0 to 0.5
8.0 to 10
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 10.5 to 12
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0