MakeItFrom.com
Menu (ESC)

A384.0 Aluminum vs. ASTM A227 Spring Steel

A384.0 aluminum belongs to the aluminum alloys classification, while ASTM A227 spring steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A384.0 aluminum and the bottom bar is ASTM A227 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 2.5
12
Fatigue Strength, MPa 140
900 to 1160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
72
Shear Strength, MPa 200
1030 to 1330
Tensile Strength: Ultimate (UTS), MPa 330
1720 to 2220
Tensile Strength: Yield (Proof), MPa 170
1430 to 1850

Thermal Properties

Latent Heat of Fusion, J/g 550
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 96
52
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 73
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
1.8
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.5
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1010
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
200 to 260
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 32
61 to 79
Strength to Weight: Bending, points 38
41 to 48
Thermal Diffusivity, mm2/s 39
14
Thermal Shock Resistance, points 15
55 to 71

Alloy Composition

Aluminum (Al), % 79.3 to 86.5
0
Carbon (C), % 0
0.45 to 0.85
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
97.4 to 99.1
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.3 to 1.3
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 12
0.15 to 0.35
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0