MakeItFrom.com
Menu (ESC)

A384.0 Aluminum vs. ASTM A387 Grade 2 Steel

A384.0 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 2 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A384.0 aluminum and the bottom bar is ASTM A387 grade 2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 2.5
25
Fatigue Strength, MPa 140
190 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Shear Strength, MPa 200
300 to 350
Tensile Strength: Ultimate (UTS), MPa 330
470 to 550
Tensile Strength: Yield (Proof), MPa 170
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 550
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 610
1470
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 96
45
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 73
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.6
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 7.5
1.6
Embodied Energy, MJ/kg 140
20
Embodied Water, L/kg 1010
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 180
180 to 320
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 32
16 to 20
Strength to Weight: Bending, points 38
17 to 19
Thermal Diffusivity, mm2/s 39
12
Thermal Shock Resistance, points 15
14 to 16

Alloy Composition

Aluminum (Al), % 79.3 to 86.5
0
Carbon (C), % 0
0.050 to 0.21
Chromium (Cr), % 0
0.5 to 0.8
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
97.1 to 98.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.55 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.6
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 10.5 to 12
0.15 to 0.4
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0