MakeItFrom.com
Menu (ESC)

A384.0 Aluminum vs. AWS E80C-Ni2

A384.0 aluminum belongs to the aluminum alloys classification, while AWS E80C-Ni2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A384.0 aluminum and the bottom bar is AWS E80C-Ni2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 2.5
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
72
Tensile Strength: Ultimate (UTS), MPa 330
620
Tensile Strength: Yield (Proof), MPa 170
540

Thermal Properties

Latent Heat of Fusion, J/g 550
250
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 96
52
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 73
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.3
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.5
1.6
Embodied Energy, MJ/kg 140
22
Embodied Water, L/kg 1010
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
160
Resilience: Unit (Modulus of Resilience), kJ/m3 180
770
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 32
22
Strength to Weight: Bending, points 38
21
Thermal Diffusivity, mm2/s 39
14
Thermal Shock Resistance, points 15
18

Alloy Composition

Aluminum (Al), % 79.3 to 86.5
0
Carbon (C), % 0
0 to 0.12
Copper (Cu), % 3.0 to 4.5
0 to 0.35
Iron (Fe), % 0 to 1.3
93.8 to 98.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Nickel (Ni), % 0 to 0.5
1.8 to 2.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 10.5 to 12
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.35
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0
0 to 0.5