MakeItFrom.com
Menu (ESC)

A384.0 Aluminum vs. EN 1.4590 Stainless Steel

A384.0 aluminum belongs to the aluminum alloys classification, while EN 1.4590 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A384.0 aluminum and the bottom bar is EN 1.4590 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 2.5
26
Fatigue Strength, MPa 140
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Shear Strength, MPa 200
310
Tensile Strength: Ultimate (UTS), MPa 330
480
Tensile Strength: Yield (Proof), MPa 170
270

Thermal Properties

Latent Heat of Fusion, J/g 550
280
Maximum Temperature: Mechanical, °C 170
860
Melting Completion (Liquidus), °C 610
1440
Melting Onset (Solidus), °C 510
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 96
26
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 73
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.5
2.5
Embodied Energy, MJ/kg 140
37
Embodied Water, L/kg 1010
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180
190
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 32
17
Strength to Weight: Bending, points 38
18
Thermal Diffusivity, mm2/s 39
7.0
Thermal Shock Resistance, points 15
17

Alloy Composition

Aluminum (Al), % 79.3 to 86.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
79.7 to 83.7
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0
0.35 to 0.55
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 12
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.5
0