MakeItFrom.com
Menu (ESC)

A384.0 Aluminum vs. EN 1.7386 Steel

A384.0 aluminum belongs to the aluminum alloys classification, while EN 1.7386 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A384.0 aluminum and the bottom bar is EN 1.7386 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 2.5
18 to 21
Fatigue Strength, MPa 140
170 to 290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
75
Shear Strength, MPa 200
340 to 410
Tensile Strength: Ultimate (UTS), MPa 330
550 to 670
Tensile Strength: Yield (Proof), MPa 170
240 to 440

Thermal Properties

Latent Heat of Fusion, J/g 550
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 96
26
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 73
10

Otherwise Unclassified Properties

Base Metal Price, % relative 11
6.5
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.5
2.0
Embodied Energy, MJ/kg 140
28
Embodied Water, L/kg 1010
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
92 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 180
150 to 490
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 32
20 to 24
Strength to Weight: Bending, points 38
19 to 22
Thermal Diffusivity, mm2/s 39
6.9
Thermal Shock Resistance, points 15
15 to 18

Alloy Composition

Aluminum (Al), % 79.3 to 86.5
0 to 0.040
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 3.0 to 4.5
0 to 0.3
Iron (Fe), % 0 to 1.3
86.8 to 90.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 10.5 to 12
0.25 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0