MakeItFrom.com
Menu (ESC)

A384.0 Aluminum vs. EN AC-21100 Aluminum

Both A384.0 aluminum and EN AC-21100 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A384.0 aluminum and the bottom bar is EN AC-21100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
71
Elongation at Break, % 2.5
6.2 to 7.3
Fatigue Strength, MPa 140
79 to 87
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
27
Tensile Strength: Ultimate (UTS), MPa 330
340 to 350
Tensile Strength: Yield (Proof), MPa 170
210 to 240

Thermal Properties

Latent Heat of Fusion, J/g 550
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 610
670
Melting Onset (Solidus), °C 510
550
Specific Heat Capacity, J/kg-K 880
880
Thermal Conductivity, W/m-K 96
130
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
34
Electrical Conductivity: Equal Weight (Specific), % IACS 73
100

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 2.8
3.0
Embodied Carbon, kg CO2/kg material 7.5
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1010
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
19 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 180
300 to 400
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 32
31 to 33
Strength to Weight: Bending, points 38
36 to 37
Thermal Diffusivity, mm2/s 39
48
Thermal Shock Resistance, points 15
15

Alloy Composition

Aluminum (Al), % 79.3 to 86.5
93.4 to 95.7
Copper (Cu), % 3.0 to 4.5
4.2 to 5.2
Iron (Fe), % 0 to 1.3
0 to 0.19
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 0.55
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 10.5 to 12
0 to 0.18
Tin (Sn), % 0 to 0.35
0
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 1.0
0 to 0.070
Residuals, % 0
0 to 0.1