MakeItFrom.com
Menu (ESC)

A384.0 Aluminum vs. EN AC-45500 Aluminum

Both A384.0 aluminum and EN AC-45500 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A384.0 aluminum and the bottom bar is EN AC-45500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
70
Elongation at Break, % 2.5
2.8
Fatigue Strength, MPa 140
80
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Tensile Strength: Ultimate (UTS), MPa 330
320
Tensile Strength: Yield (Proof), MPa 170
250

Thermal Properties

Latent Heat of Fusion, J/g 550
500
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 610
610
Melting Onset (Solidus), °C 510
600
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 96
150
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
33
Electrical Conductivity: Equal Weight (Specific), % IACS 73
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.8
2.6
Embodied Carbon, kg CO2/kg material 7.5
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1010
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
8.2
Resilience: Unit (Modulus of Resilience), kJ/m3 180
430
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 32
34
Strength to Weight: Bending, points 38
40
Thermal Diffusivity, mm2/s 39
65
Thermal Shock Resistance, points 15
15

Alloy Composition

Aluminum (Al), % 79.3 to 86.5
90.6 to 93.1
Copper (Cu), % 3.0 to 4.5
0.2 to 0.7
Iron (Fe), % 0 to 1.3
0 to 0.25
Magnesium (Mg), % 0 to 0.1
0.2 to 0.45
Manganese (Mn), % 0 to 0.5
0 to 0.15
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 10.5 to 12
6.5 to 7.5
Tin (Sn), % 0 to 0.35
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 1.0
0 to 0.070
Residuals, % 0
0 to 0.1