MakeItFrom.com
Menu (ESC)

A384.0 Aluminum vs. CC766S Brass

A384.0 aluminum belongs to the aluminum alloys classification, while CC766S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A384.0 aluminum and the bottom bar is CC766S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
110
Elongation at Break, % 2.5
28
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 28
40
Tensile Strength: Ultimate (UTS), MPa 330
500
Tensile Strength: Yield (Proof), MPa 170
190

Thermal Properties

Latent Heat of Fusion, J/g 550
180
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 610
840
Melting Onset (Solidus), °C 510
800
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 96
89
Thermal Expansion, µm/m-K 21
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
32
Electrical Conductivity: Equal Weight (Specific), % IACS 73
36

Otherwise Unclassified Properties

Base Metal Price, % relative 11
24
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 7.5
2.8
Embodied Energy, MJ/kg 140
48
Embodied Water, L/kg 1010
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180
180
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 32
17
Strength to Weight: Bending, points 38
18
Thermal Diffusivity, mm2/s 39
28
Thermal Shock Resistance, points 15
17

Alloy Composition

Aluminum (Al), % 79.3 to 86.5
0.3 to 1.8
Antimony (Sb), % 0
0 to 0.1
Copper (Cu), % 3.0 to 4.5
58 to 64
Iron (Fe), % 0 to 1.3
0 to 0.5
Lead (Pb), % 0
0 to 0.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 0.5
Nickel (Ni), % 0 to 0.5
0 to 2.0
Silicon (Si), % 10.5 to 12
0 to 0.6
Tin (Sn), % 0 to 0.35
0 to 0.5
Zinc (Zn), % 0 to 1.0
29.5 to 41.7
Residuals, % 0 to 0.5
0